Unext

Emerging Technologies

AI/ML

Level 1

• Python Programming

- Importing & Cleaning
- Data Manipulation
- Intro to Machine Learning
- Exploring a Database
- Summarizing and aggregating numeric data
- Exploring categorical data, unstructured text, Correlated Queries and Nested Queries.
- Window Functions and Working with dates & timestamps.
- Simple Linear Regression Modeling.
- Multiple Regression
- Ridge Regression.
- Feature Selection & Lasso.
- Nearest Neighbors & Kernel Regression
- Solving Machine Learning requirement using Regression Model
- Deep Learning
- Image Analysis
- Natural Language Generation
- Chatbot
- Recommendation Systems
- Reinforcement Learning

Level 3

Understanding Blockchain

Introduction to Consensus

Blockchain in Fintech

- Blockchain Concepts
- Blockchain Features
- Public VS private Blockchain
- Security of Blockchain
 - a) Distributed Databases Vs Blockchain Distributed Ledger
 - b) Smart Contractors
 - c) Fundamentals of Decentralization
- Blockchain Use Cases
 - a) Blockchain Decentralized Identities -Zero Knowledge Proofs Overview
 - b) Enterprise Blockchain Use cases
 - I. Track & Trace with IOT & blockchain
 - II. Supply Chain (On chain explanation)

Consensus

- Byzantine Fault Tolerance (BFT),
- Crash Fault Tolerance (CFT)
- How Conesus works
- Different Consensus Algorithms POW, POS, dPOS, Raft
- Forking & Challenges
- Hyperledger Fabric consensus
- Introduction to Tokenization
- Understanding various use cases of Fintech & Tokenization
- Fungible & Non-Fungible Tokens Overview
- Stable Coins Overview
- Central Bank Digital Currencies [CBDC] Overview

Ethereum

Ethereum Smart Contracts

Use cases & Demos

- Deploying Smart Contracts
- Smart Contracts and DAOs
- Decentralize Apps
- Smart Contracts
- Key Properties of smart Contracts
- Language for Smart Contracts
- Advantages of Smart Contracts
- Disadvantages
- Smart Contracts Use cases
- Web App dev
- Installing Geth
- Web3.js
- Truffle
- Block chain based smart contract for Supply chain
- Block chain-based solution for Business Network to illustrate using Access Control over Personally Identifiable Information.
- Block chain-based solution for Commodities Trading Business
 Network.
- Block chain-based solution for Blockchain Certificates for Education
- Block chain based smart contract for e-voting solution.
- Block chain based smart contract for fund collection and fund distribution.

UNEY

Program Modules

Module Flow

Day 1

Introduction to IoT and it's Business Impact (1 hours)

TOPICS

- Introduction to IoT
- Quick history of the Internet PC, Internet, Mobile Internet, IoT
- Case Studies of IoT Applications
 - Remote connected operations
 - Asset Management
 - Production Optimization
 - Predictive Maintenance
- Blueprint for starting an IoT Project
- People Impact: Building an IoT team, skills needed, Upcoming IoT Job roles

- Understand the Business benefits of IoT
- Understand the key application types of IoT
- Understand the application of IoT to various domains

The 4-layer architecture of IoT (2 hours)

TOPICS

Layer 1: Sensors and devices

 Types of sensors and actuators, categories of devices, device management

Layer 2: IoT Gateways and Networking

• Gateway device characteristics, Communication protocols, networking protocols, data protocols, Edge Analytics

Layer 3: Cloud computing

• IaaS, PaaS, SaaS models, ingestion, storage, retrieval, cloud computing platforms, Role of Cloud in IoT

Layer 4: Analytics and Machine Learning

• IOT Data Science life-cycle, introduction to different types of Analytics, introduction to ML

Live demo showcasing and IoT use case involving all 4 layers of IoT

- Get exposed to all the 4 layers of IoT
- Appreciate the data flow path of a typical IoT system from edge to cloud

Hardware and Software Architecture(5 hours)

Day 2 (Hands-on)

Programming basics (5 hours)

TOPICS

Introduction to Python

- Why Python
- Python Basics
 - Variables and Operators
 - Data Structures
 - Control flow
 - Functions
- Programming Raspberry Pi with Python
 - Interfacing I/O devices
 - Talking to the cloud

- Understand why python is the most feasible and compatible language for developing IoT solutions
- Learn the basics of python programming on raspberry pi

Machine-to-Machine Communication (3 hours)

Day 3 (Hands-on)

Integrating devices to cloud (8 hours)

TOPICS

- Device management (Connectivity, On-boarding, Authentication, FOTA, Shadow),
- Data Aggregation
- Rules engine
- Platform for Analytics
- Storing Sensor Data over Cloud Computing Demo: Watson IoT

- Understand the Role of cloud computing in IoT
- Understand the cloud computing deployment models
- Understand the different Cloud application architecture styles and patterns
- Learn IoT built-in PaaS services to capture device data from field to store on cloud

Required Hardware Components

Component	No.of Units/Participant
Arduino Uno	1
Raspberry Pi	1
Bread Board (Medium)	2
DHT 11 or 22	1
PIR sensor	1
Ultrasonic sensor	1
Jumper wires (M-F,F-F,M-M)	1/type
HDMI cable	1
Pushbuttons	1
LEDs mix (RGB)	10
Resistors box	1

Metaverse (AR / VR)

Awareness Module – 16 hours

Basic module

- Introduction
- History of Web 2.0 and evolution to Web 3.0
- What is Metaverse
- The 7 layers of Metaverse
 - Experience
 - Discovery
 - Creator Economy
 - Spatial Computing
 - Decentralization
 - Human Interface
 - Infrastructure

- Understand the core concepts and layers of metaverse
- Be able view the metaverse as a whole and understand the related technologies, primarily focusing on what and why
- Learn about industry applications along with best practices for interacting with metaverse

Basic module

Intermediate Module

Duration for participants who completes basic module – 28 hours Others – 32 hours (Basic module on overview of Metaverse for 4 hours)

Intermediate module (4 hours)

TOPICS

- Introduction
- History of Web 2.0 and evolution to Web 3.0
- What is Metaverse
- The 7 layers of Metaverse
- Building blocks of metaverse

Intermediate module

TOPICS

• Enabling technologies of Meta - Infrastructure

- Network and hardware requirements
 - Evolution of network Wifi, progress from 5G to 6G
 - Need for real-time bandwidth application
 - Analysing high bandwidth, low latency network capabilities
 - Role of hardware in enabling high performance and miniaturization in devices

- Be able to get insights and exposure to meta infrastructure
- Understand in detail about the enabling technologies of meta ecosystem
- Learn about programming and platform requirements of meta
- Understand and learn about the features of real-time meta implementation examples, on blockchain

Intermediate module

TOPICS

- Enabling technologies of Meta Infrastructure
- Virtualization
 - Overview on computational requirements of the meta
 - Memory and data virtualization
 - Compute virtualization and
 - App virtualisation
- Overview of Local, Edge, and Fog computing
- Blockchain
 - Overview of blockchain and need for decentralization in Metaverse
 - Understanding smart contracts, NFTs and cryptocurrency
 - Creating meta mask wallets for transaction
 - Imports for Smart contracts
 - Create a smart contract with Polygon
 - Executing smart contracts from wallets
 - Realtime Solutioning using blockchain examples
 - Decentraland and Sandbox

- Be able to get insights and exposure to meta infrastructure
- Understand in detail about the enabling technologies of meta ecosystem
- Learn about programming and platform requirements of meta
- Understand and learn about the features of real-time meta implementation examples, on blockchain

Intermediate module

TOPICS

- Implementation Technologies
 - Programming and Platform requirements of Meta
 - ARVR: AI driven 3D engines
 - Essential aspects of extended reality (XR) in building metaverse
 - Asset creation:
 - Overview on asset creation from synthetic media to NFTs
 - Network Implementation
- Applications Current and Future of Meta
 - Interface and access: Consumer and Enterprise-focused hardware and displays (VR/AR haptic tech/devices)
 - User experience: Overview on asset marketplaces
 - Examples: Opensea, Algorand & Metamask

- Be able to get insights and exposure to meta infrastructure
- Understand in detail about the enabling technologies of meta ecosystem
- Learn about programming and platform requirements of meta
- Understand and learn about the features of real-time meta implementation examples, on blockchain

Duration for participants who completes Intermediate module – 26 hours Others – 48 hours

TOPICS

• Enabling technologies of Meta - Infrastructure

- Network and hardware requirements
 - Evolution of network Wifi, progress from 5G to 6G
 - Need for real-time bandwidth application
 - Analysing high bandwidth, low latency network capabilities
 - Role of hardware in enabling high performance and miniaturization in devices

- LEARNING OUTCOMES
- Understand metaverse and interoperability of technologies across the components of meta pyramid
- Be able to get insights and exposure to meta infrastructure
- Understand in detail about the enabling, and implementation technologies of meta ecosystem
- Learn about programming and platform requirements of meta
- Understand and learn about the features of real-time meta implementation examples, on blockchain
- Be able to build virtual environment using Unity
- Understand and learn identifying the scope and objectives for implementing metaverse projects

TOPICS

- Enabling technologies of Meta Infrastructure
 - Virtualization
 - Overview on computational requirements of the meta
 - Memory and data virtualization
 - Compute virtualization and
 - App virtualisation
 - Overview of Local, Edge, and Fog computing
 - Blockchain
 - Overview of blockchain and need for decentralization in Metaverse
 - Understanding smart contracts, NFTs and cryptocurrency
 - Creating meta mask wallets for transaction
 - Imports for Smart contracts
 - Create a smart contract with Polygon
 - Executing smart contracts from wallets
 - Realtime Solutioning using blockchain examples
 - Decentraland and Sandbox

- Understand metaverse and interoperability of technologies across the components of meta pyramid
- Be able to get insights and exposure to meta infrastructure
- Understand in detail about the enabling, and implementation technologies of meta ecosystem
- Learn about programming and platform requirements of meta
- Understand and learn about the features of real-time meta implementation examples, on blockchain
- Be able to build virtual environment using Unity
- Understand and learn identifying the scope and objectives for implementing metaverse projects

TOPICS

- Implementation Technologies
 - ARVR: AI driven 3D engines
 - Essential aspects of extended reality (XR) in building metaverse
 - Create a metaverse using Unity Virtual Space creation
 - Creation of a 3D Scene
 - Generating objects
 - Generating object movements
 - Generating object interactions
 - Creating Virtual assets land, avtar customisation
 - Capstone Project (Gaming environment)

- Understand metaverse and interoperability of technologies across the components of meta pyramid
- Be able to get insights and exposure to meta infrastructure
- Understand in detail about the enabling, and implementation technologies of meta ecosystem
- Learn about programming and platform requirements of meta
- Understand and learn about the features of real-time meta implementation examples, on blockchain
- Be able to build virtual environment using Unity
- Understand and learn identifying the scope and objectives for implementing metaverse projects

TOPICS

Implementation Technologies

- Asset creation:
 - Overview on asset creation from synthetic media to NFTs
 - Network Implementation
 - Exercise: Implementation of virtual machine and blockchain infrastructure on cloud
- Applications Current and Future of Meta
- Interface and access: Consumer and Enterprise-focused hardware and displays (VR/AR haptic tech/devices)
- User experience: Overview on asset marketplaces
- Examples: Opensea, Algorand & Metamask

- Understand metaverse and interoperability of technologies across the components of meta pyramid
- Be able to get insights and exposure to meta infrastructure
- Understand in detail about the enabling, and implementation technologies of meta ecosystem
- Learn about programming and platform requirements of meta
- Understand and learn about the features of real-time meta implementation examples, on blockchain
- Be able to build virtual environment using Unity
- Understand and learn identifying the scope and objectives for implementing metaverse projects

Next Steps...

- 1. Agreement on Academic Proposal between client and UNext
- 2. Commercial proposal from UNext
- 3. Closure on Commercials from client
- 4. Commence Program

Thank You