5 Tips to Switch Career Towards Data Science

img
Nithya Lakshmi
Share

Hoping to make a career switch to data science, there are a ton of questions to tackle: Which languages should I learn? Which skills do I need? Should I shell out money for a training program? But most of all, you might be wondering, Where do I start?

With this article, we hope to provide a starting point.

How to make a career transition into data science

The dominant traits of anyone who has the goal to become a data scientist include an intense curiosity and the dedication to seek for information.

Therefore, coming from the best, itโ€™s clear that you donโ€™t have to be the most technically-sound person in town to become a data scientist. This should come as an encouragement for all of you out there who are from a non-technical background and do the same thing.

Here is a simple yet effective tips for those who want to transition from a non-technical background to become a data scientist.

Tip 1: Upskill Yourself with A Planned Course

It would be highly recommended to enroll for a well-curated course. An ideal curriculum should cover the basics of programming in Python and R and, deep learning, data visualization and Big Data handling, Statistics, and probability.

The best part about having a degree in data science that it would not only amp the value of your CV but also enhance your knowledge in the field through several assignment and examinations.

Tip 2: Learn to speak and think like a Data Scientist

The most important first step is to speak and think like a Data Scientist. What does that mean? First, learn how data scientists speak. What terms do they throw around frequently (e.g., scikitlearn, matrix-factorization, eigenvectors)? Donโ€™t be afraid, just take notes on the words you donโ€™t understand. Why? Learning the vocabulary is the first step in learning and communicating data science.

Tip 3: Engage in Kaggle Challenges

I eluded to this a bit earlier but, learning by doing is ultimately the best way to learn. Spend time looking at the kernels in Kaggle competitions to learn from how other Kagglerโ€™s approached the competition. At first, this will beย extremely daunting, youย wonโ€™t understand 95% of the code youโ€™re reading, let alone,ย you probably wonโ€™t be able to run the code on your own computer even after youโ€™ve cloned it.

The most important part of Kaggle to an aspiring Data Scientist is the โ€œKernelsโ€ section. Here, fellow Kagglerโ€™s post their solutions to the problems posed by the competition. Spend at least an hour of your time, TYPING and CODING out their solution โ€” practice typing each line, line-by-line in your own Jupyter Notebook. Run the code and see what happens

This is where you need to be persistent.

You arenโ€™t going to learn anything if you get frustrated, so ease yourself into engaging with these challenges and soon enough youโ€™ll be able to understand the kernels you read.

Remember, when setting goals, be realistic about them (e.g., SMART goals):ย Specific, Measurable, Attainable, Realistic, Time-Bound (SMART).

In other words, donโ€™t think youโ€™ll be reading Kaggle kernels within a week.ย 

Give yourself aย specific, realistic and time-bound goal โ€”

Set small goals, write them down and check them off when you achieve them. When you feel frustrated, go back to these checkmarks and see how far youโ€™ve come since yesterday.

Tip 4: Find your own Data Science Project

Find a project youโ€™re passionate about, whether it be a problem youโ€™d like to solve or a library youโ€™d like to learn โ€” turn this into a project that youโ€™ll put onto your github as a portfolio piece.

Finding a problem is best done through conversations. Engage with your community, your friends orโ€ฆ Even strangers. Find out what bothers them, or talk to them about ideas youโ€™ve always had.

Hash out your idea, make it simple. Your project isnโ€™t going to change the world. The most important part here is to start on one.

Tip 5: Remain Forever Open To Learning

When you step into the field of Data Science, you are more likely to have peers or superiors in the field with a STEM background. Remember that to become a data scientist, knowledge of certain core subjects is indispensable. Although itโ€™s encouraging to know that willpower can get you anywhere in life, there has to be a methodical approach to what you do.

Strengthen your basics and read up on all that you can get your hands on related to data science. Understand that you are never going to finish learning, but you have to keep up the spirit of intellectual curiosity at all times.

This mentality will make your transition from a non-technical field to data science both hassle-free and interesting! For more inspiration, check outย this linkย on real-life examples of people who made it in data science despite their non-technical background.

Conclusion

A career transition is never easy, especially if youโ€™ve just begun your journey. During my transition, I kept this quote close to my heart:

โ€œThe best time to start was yesterday, the next best time isย NOW.โ€

The fact that youโ€™ve read this entire article and are engaging with this sentence today, should show yourself youโ€™re ready to start your transition.

Related Articles

loader
Please wait while your application is being created.
Request Callback