Choosing encryption software to secure sensitive data may be difficult for someone who’s not a techie or is relatively new to cryptography, particularly between symmetric and asymmetric key cryptography.Â
A well-rounded approach for securing digital transactions includes the use of both symmetric and asymmetric key cryptography. Each method of data security has its advantages when implemented in the right scenarios. Let us look at what symmetric and asymmetric keys are, the distinction between them, and which one to choose based on their advantages and disadvantages.
A procedure or formula for resolving a data snooping issue is what we mean by an algorithm. A set of mathematical procedures for encrypting data is an encryption algorithm. A key is needed to decipher the ciphertext and return the data to its original form using such an algorithm. This brings us to the long-established field of cryptography, which is concerned with ensuring the confidentiality and integrity of digital data and communications.
Cryptography is a method of storing and transmitting data in a specific form so that only those who are meant to see and process that data can do so. This is done using advanced mathematical concepts. Encryption is a fundamental concept in cryptography – It is the process of encoding a message in a way that an eavesdropper cannot decipher. Using this method dates back to the time of Caesar when he used Caesar’s cipher to encrypt his messages. Encryption and transmission of a user’s plain text via a communication channel ensure that an eavesdropper cannot access it. Decryption occurs at the receiver’s end, so the plain text is restored.
Unauthorized access to all types of data is an ever-present risk in today’s cyber world. Financial and payment system data are the most vulnerable data, which may reveal consumers’ and clients’ personal identifying information (PII) or payment card records.Â
Encryption is critical for securing personally identifiable information and mitigating the threats for companies that perform payment transactions every minute of the day. This makes cryptography crucial. There are mainly two types of cryptography: symmetric and asymmetric cryptography.
Symmetric Key Cryptography, or Symmetric Encryption, uses a secret key for both encryption and decryption. This approach is the inverse of Asymmetric Encryption, which uses one key to encrypt and another to decrypt. Data is translated to a format that cannot be interpreted or inspected by someone who does not have the secret key used to encrypt it during this phase.
The strength of the random number generator used to generate the secret key determines the effectiveness of this method. Symmetric Key Cryptography, commonly used on the Internet today, comprises two kinds of algorithms: Block and Stream. The Advanced Encryption Standard (AES) and the Data Encryption Standard (DES) are two common encryption algorithms. This type of encryption is typically much faster than Asymmetric Encryption, but it allows the secret key to be held by both the sender and the data receiver.
Symmetric cryptography is based on a single shared key that all parties are aware of and can use to encrypt and decrypt data.
Secret-key, single-key, shared-key, one-key, and private-key encryption are other words for symmetric-key cryptography. The usage of the last and first words will lead to misunderstanding compared to the related language used in public-key cryptography.
Symmetric key encryption employs one of the following encryption techniques:
Stream ciphers: Encrypt a message’s digits or letters one at a time.
Block ciphers: Encrypt a group of bits as a single entity, inserting the plaintext to make it a block size multiple. 64-bit blocks are widely used. The NIST-approved Advanced Encryption Standard (AES) algorithm and the GCM block cipher mode of operation all use 128-bit blocks.
Although symmetric encryption is an older type of encryption, it is simpler and more effective than asymmetric encryption, which strains networks due to data size performance problems and heavy CPU usage.Â
Since symmetric encryption performs smoother and quicker than asymmetric encryption, it is commonly used for bulk encryption / encrypting massive volumes of data, such as database encryption. In a database, the secret key can be used only by the database to encrypt or decrypt data.
Here are a few instances of where symmetric cryptography is used:
Asymmetric cryptography, better known as public-key cryptography, encrypts and decrypts a message using a pair of similar keys. In asymmetric key cryptography, the private key is kept by one public key and one private key — to prevent unauthorized entry or usage. Anybody can use a public key to encrypt a document so that only the expected receiver can decrypt it with their private key. A private key or secret key is only known to the key’s generator.
When anyone tries to submit an encrypted message, they will use a shared directory to retrieve the recipient’s public key and use it to encrypt the message until submitting it. The message will then be decrypted by the receiver using their associated private key.Â
However, when the sender encrypts the message using their private key, the message may only be decrypted using the sender’s public key, thus authenticating the sender. These encryption and decryption procedures are automatic; users don’t need to lock and unlock the message manually.
Numerous protocols, including the transport layer security (TLS) and safe sockets layer (SSL) protocols that allow HTTPS, depend on asymmetric cryptography. Encryption is often used in browsers that need to create a stable link over an unstable network, such as the Internet, or to verify a digital signature.
The key advantage of asymmetric cryptography is increased data security. Since users are never expected to disclose or exchange their private keys, the risks of cyber activity on a user’s private key during transmission are reduced.
Asymmetric encryption uses: Asymmetric cryptography is often used to check the authenticity of data using digital signatures. A digital signature is a cryptographic technique for verifying the validity and credibility of a message, software, or digital record. It’s the equivalent of an in-person signature or a sealed seal in digital form.
Digital signatures, which are based on asymmetric cryptography, may include proof of the origin, identification, and status of an electronic record, transaction, or post, as well as acknowledge the signer’s informed consent.
You can also use asymmetric encryption in applications where many users can encrypt and decode messages, such as:
So, when it comes to the difference between symmetric and asymmetric encryption, which one is more secure? Asymmetric encryption is more stable than symmetric encryption, but it is slower. They’re both powerful in their own ways, and depending on the job at hand, one or both may be used individually or together.
The table below compares symmetric and asymmetric encryption in greater detail. Some of these variations are due to the different types of keys used, and others are due to the length of time it takes to compute the encryption methods.
The versatility of the symmetric encryption method is its most significant advantage. However, the versatility of symmetric encryption algorithms is not without flaws — it suffers from a problem known as “key distribution.”Â
Advantages
Disadvantages
Asymmetric encryption is an alternative mode of cryptography that helps overcome the major distribution issues that arise due to the symmetric encryption process. As with all the other aspects of the world, everything has a cost — and asymmetric encryption is no exception. In this scenario, the cost is reduced by speed and computing resources due to the use of longer keys in this encryption algorithm. As a result, asymmetric encryption is deemed slower but more reliable than symmetric encryption.
While asymmetric cryptography is more advanced than symmetric cryptography, both are still in use today — and are often used in tandem. This is because each solution has its advantages and disadvantages. There are two significant trade-offs between symmetric and asymmetric cryptography: speed and security.Â
Since it does not include the exchange of keys, asymmetric encryption is thought to be more reliable. A user’s private key is never revealed or shared. Symmetric encryption takes longer than symmetric encryption and is generally a slower process. However, this is not a significant disadvantage, and it is commonly used to encrypt data where confidentiality is the primary concern.
Keeping large-scale symmetric encryption systems operational is a challenge. This is particularly true where the corporate or IT infrastructure is decentralized/geographically dispersed, and we want to achieve banking-grade protection and audibility. It is advised that specific software be used to ensure the appropriate life-cycle for and key generated to do this correctly.Â
Apart from SSL, a variation of each of these strategies is seen in various other situations. End-to-end encryption is utilized for messaging apps like Signal and WhatsApp, where asymmetric encryption is used to initialize the secure communication channel, and symmetric encryption is used for the rest of the conversation. When it comes to encryption, the more recent schemes are not always the perfect fit.Â
Indeed, as cryptography evolves, modern algorithms are being built to keep up with eavesdroppers and secure knowledge to improve secrecy. In the coming years, hackers would undoubtedly make it difficult for experts but you can expect more from the cryptographic world!
So, have you made up your mind to make a career in Cyber Security? Visit our Master Certificate in Cyber Security (Red Team) for further help. It is the first program in offensive technologies in India and allows learners to practice in a real-time simulated ecosystem, that will give them an edge in this competitive world.
Fill in the details to know more
What Is Asset Classification?
March 20, 2023
Masquerade Attack – Everything You Need To Know!
February 27, 2023
Best Infosys Information Security Engineer Interview Questions and Answers
What Are SOC and NOC In Cyber Security? What’s the Difference?
A Brief Introduction to Cyber Security Analytics
February 26, 2023
Cyber Safe Behaviour In Banking Systems
February 17, 2023
Add your details:
By proceeding, you agree to our privacy policy and also agree to receive information from UNext through WhatsApp & other means of communication.
Upgrade your inbox with our curated newletters once every month. We appreciate your support and will make sure to keep your subscription worthwhile