As you know Big Data involves working with huge chunks of both structured and unstructured data. The volume of data that data scientists have to work on sometimes exceeds over millions of rows and it becomes too tedious to prepare for the work, albeit doing it. That is when these technologies become interdisciplinary. With machine learning and artificial intelligence, a data scientist can make his or her work of process Big Data easily. Considering the volume of data sets, software models and conventional databases turn out to be less effective. This is exactly when machine learning can be applied to Big Data.
Like we mentioned in one of our previous blog articles, machine learning is an integral part of Artificial Intelligence. There are three types of algorithms in machine learning that can be used for Big Data classification – Supervised, semi-supervised and unsupervised.
As far as supervised learning algorithms, some of the most commonly used ones include –
Classification and regression are two classifications of supervised learning. Classification is when the class attribute of a set is discrete and regression is when it is continuous. Without getting too technical, let us simply understand that some of the classification methods include
When it comes to regression techniques, they include linear and logistic regression techniques.
In unsupervised learning, the algorithms take unlabelled data and classify it by drawing a comparison among data features. That is why you can find algorithms in use such as –
Clustering can be further classified into three categories (this can take a little while for comprehension) – supervised clustering, unsupervised clustering and semi-supervised clustering.
Supervised clustering works on identifying clusters with high-probability densities with respect to individual classes! Supervised clustering works best when there are target variables and training sets that include the variables to cluster.
When a measure of dissimilarity or similarity is presented, unsupervised clustering reduces the intercluster similarity and increases intracluster similarity. It works on a very specific object function and that is why hierarchal and k-Means are two of the most popular clustering techniques in unsupervised learning.
Apart from the similarity parameter, this class of clustering makes use of adjusting or guiding domain information in order to improve clustering. This guiding or adjusting domain information could be pairwise constraints prevalent between the target or observation variables for some observations.
Apart from these, there are algorithms such as support vector machines, which are binary classifiers; decision trees, which are used to classify data depending on its feature value and more.
For a beginner, these are some of the first-level of insights you need to know about the algorithms used in Big Data classification. Like we always mention, practical exposure always helps you understand complexities like these. So, if you haven’t started off with an artificial intelligence or a machine learning course, it is high time you did.
If you want to build your future in Machine Learning & AI CLICK HERE.
Fill in the details to know more
From The Eyes Of Emerging Technologies: IPL Through The Ages
April 29, 2023
Personalized Teaching with AI: Revolutionizing Traditional Teaching Methods
April 28, 2023
Metaverse: The Virtual Universe and its impact on the World of Finance
April 13, 2023
Artificial Intelligence – Learning To Manage The Mind Created By The Human Mind!
March 22, 2023
Wake Up to the Importance of Sleep: Celebrating World Sleep Day!
March 18, 2023
Operations Management and AI: How Do They Work?
March 15, 2023
How Does BYOP(Bring Your Own Project) Help In Building Your Portfolio?
What Are the Ethics in Artificial Intelligence (AI)?
November 25, 2022
What is Epoch in Machine Learning?| UNext
November 24, 2022
The Impact Of Artificial Intelligence (AI) in Cloud Computing
November 18, 2022
Role of Artificial Intelligence and Machine Learning in Supply Chain Management
November 11, 2022
Best Python Libraries for Machine Learning in 2022
November 7, 2022
Add your details:
By proceeding, you agree to our privacy policy and also agree to receive information from UNext through WhatsApp & other means of communication.
Upgrade your inbox with our curated newletters once every month. We appreciate your support and will make sure to keep your subscription worthwhile