Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing the Supply Chain Management domain. These technologies are helping companies streamline their supply chains, reduce costs, enhance customer satisfaction, and increase revenue. They also help companies achieve faster business results by automating manual processes and providing valuable insights to improve customer experience.
Supply Chain Management is an essential part of any business. The initial stage of the supply chain process is ensuring that the right goods are delivered at the right place and time to meet consumer demand. Supply Chain Management is also responsible for optimizing costs by reducing waste while maximizing efficiency.
In the past, few tools were available to help companies manage their supply chain. But now, Artificial Intelligence and Machine Learning have revolutionized this domain by improving efficiency and reducing costs.
Artificial Intelligence (AI) is the branch of computer science that studies how to make computers do things that require intelligence when done by humans. AI research has many practical applications, including medical diagnosis, speech recognition, and translation between languages.
AI systems can be trained to learn from experience, which means they can improve their performance based on what they’ve previously seen or done. In this way, AI machines are different from traditional computers that perform only according to tasks programmed into them beforehand by people.
AI is a broad field and includes many different types of systems. Globally, the market for Artificial Intelligence is expected to reach over $136 billion by the year 2022. Some AI systems are designed to solve specific problems like playing chess or diagnosing diseases. Other systems attempt to mimic human thought processes by learning from experience.
Let’s take a look at some of the ways that AI is being used today.
What is Machine Learning? It’s a subset of Artificial Intelligence. Machine Learning is the science of getting computers to act without being explicitly programmed. Algorithms are used to make predictions about future data, such as what movie you might like or what price you should pay for your next car.
Machine Learning algorithms are often used for classification and prediction problems. For example, a computer can be trained—through Machine Learning methods—to identify specific types of images (e.g., dog breeds) with high accuracy based on a training set of labeled images (i.e., dogs).
ML is used in many industries, including supply chain and logistics, healthcare, finance, and insurance. It’s used to predict which customers are likely to churn from a loyalty program and what premiums insurers should charge for certain policies. Machine Learning algorithms can help companies make more informed business decisions without human intervention by using data from past experiences (i.e., historical data).
Various types of Machine Learning algorithms are applied to different fields like image recognition, speech recognition, natural language processing, robotics, and others. Some examples of Machine Learning are:
As the name suggests, Supply Chain Management is a process of managing the flow of goods and services from supplier to consumer. These days, suppliers are using Artificial Intelligence and Machine Learning to automate their operations and improve their productivity.
Automation of Order-to-Cash Process
Businesses can reduce manual errors and speed up order processing by automating the order-to-cash process. This will also help them improve customer service as they can process orders faster and reduce time spent on processing payments, refunds, and other requests.
Automating the order-to-cash process can also help businesses improve their financial management. For example, they can reduce their risk of fraud and theft by monitoring payments more closely.
Predicting Demands and Preparing for Shifts
There are many benefits of using predictive analytics for Supply Chain Management. One of the biggest advantages is its ability to improve customer service. Predictive analytics can predict demand, allowing companies to plan in advance and make sure that enough inventory is available when needed. This also helps reduce costs by ensuring that excess supplies are not purchased unnecessarily.
Another benefit is increased efficiency. Predictive analytics can help optimize production schedules and delivery routes, so products arrive at the right place at the right time without delays or high transportation costs incurred from unnecessary stops. It also optimizes inventory levels based on past usage patterns, such as seasonal sales demand fluctuations or product popularity changes over time.
Improved Inventory Forecasting
Artificial Intelligence (AI) and Machine Learning can help you increase forecasting accuracy, which is critical for Supply Chain Management.
Demand planning is a process that helps organizations understand their future demand, make decisions on how much to produce or order, and determine the optimal inventory levels. AI and Machine Learning tools can assist with demand planning by automating repetitive tasks, being proactive in suggesting potential solutions to problems that arise during the process, or identifying data quality issues quickly, so they don’t hinder effective decision-making.
Supply chain optimization uses data about activities across an entire supply chain to predict outcomes for each step of the process—from supplier selection to delivery—and then recommends actions that result in better outcomes for each step. Machine Learning algorithms are particularly well-suited for predicting the effects of changes in certain variables because they allow you to experiment with different scenarios without having any prior knowledge about what will work best (such as which suppliers perform best).
Smarter Operations with Data-driven Manufacturing
The advent of Machine Learning and Artificial Intelligence in the supply chain has made it possible to predict demand, optimize inventory management, and reduce order-to-cash cycles.
When it comes to forecasting, predictive analytics helps with the development of new products by analyzing past sales data. This can be extremely helpful for companies that sell seasonal products or those with limited resources for forecasting sales performance. With Machine Learning algorithms in place, you can make better decisions about what products to launch next or which ones will perform well based on historical data from previous launches. With these insights from AI technology, companies are able to prioritize their product strategy so they don’t waste time or money developing items that won’t sell as well as others within their portfolio.
Conclusion
Artificial Intelligence and Machine Learning in Supply Chain Management have many benefits. They help companies improve their operations, increase productivity, and reduce costs. While these technologies have only been applied to Supply Chain Management in recent years, they are already making a big difference for businesses around the world. To understand the importance of Artificial Intelligence and Machine Learning clearly, one must pursue the Executive PG Diploma in Management & Artificial Intelligence by IIM Indore in collaboration with UNext Jigsaw.
Fill in the details to know more
What Are SOC and NOC In Cyber Security? What’s the Difference?
February 27, 2023
Fundamentals of Confidence Interval in Statistics!
February 26, 2023
A Brief Introduction to Cyber Security Analytics
Cyber Safe Behaviour In Banking Systems
February 17, 2023
Everything Best Of Analytics for 2023: 7 Must Read Articles!
December 26, 2022
Best of 2022: 5 Most Popular Cybersecurity Blogs Of The Year
December 22, 2022
From The Eyes Of Emerging Technologies: IPL Through The Ages
April 29, 2023
Personalized Teaching with AI: Revolutionizing Traditional Teaching Methods
April 28, 2023
Metaverse: The Virtual Universe and its impact on the World of Finance
April 13, 2023
Artificial Intelligence – Learning To Manage The Mind Created By The Human Mind!
March 22, 2023
Wake Up to the Importance of Sleep: Celebrating World Sleep Day!
March 18, 2023
Operations Management and AI: How Do They Work?
March 15, 2023
How Does BYOP(Bring Your Own Project) Help In Building Your Portfolio?
What Are the Ethics in Artificial Intelligence (AI)?
November 25, 2022
What is Epoch in Machine Learning?| UNext
November 24, 2022
The Impact Of Artificial Intelligence (AI) in Cloud Computing
November 18, 2022
Best Python Libraries for Machine Learning in 2022
November 7, 2022
The Future of Artificial Intelligence in Finance in India
October 26, 2022
Add your details:
By proceeding, you agree to our privacy policy and also agree to receive information from UNext through WhatsApp & other means of communication.
Upgrade your inbox with our curated newletters once every month. We appreciate your support and will make sure to keep your subscription worthwhile