Introduction
Organizations must understand how their decisions can impact the business in this data-driven age. Hypothesis testing enables organizations to analyze and examine their decisions’ causes and effects before making important management decisions. Based on research by the Harvard Business School Online, prior to making any decision, organizations like to explore the advantages of hypothesis testing and the investigation of decisions in a proper “laboratory” setting. By performing such tests, organizations can be more confident with their decisions. Read on to learn all about hypothesis testing, one of the essential concepts in Business Analytics.
What Is Hypothesis Testing?
To learn about hypothesis testing, it is crucial that you first understand what the term hypothesis is.
A hypothesis statement or hypothesis tries to explain why something happened or what may happen under specific conditions. A hypothesis can also help understand how various variables are connected to each other. These are generally compiled as if-then statements; for example, “If something specific were to happen, then a specific condition will come true and vice versa.” Thus, the hypothesis is an arithmetical method of testing a hypothesis or an assumption that has been stated in the hypothesis.
Turning into a decision-maker who is driven by data can add several advantages to an organization, such as allowing one to recognize new opportunities to follow and reducing the number of threats. In analytics, a hypothesis is nothing but an assumption or a supposition made about a specific population parameter, such as any measurement or quantity about the population that is set and that can be used as a value to the distribution variable. General examples of parameters used in hypothesis testing are variance and mean. In simpler words, hypothesis testing in business analytics is a method that helps researchers, scientists, or anyone for that matter, test the legitimacy or the authenticity of their hypotheses or claims about real-life or real-world events.
To understand the example of hypothesis testing in business analytics, consider a restaurant owner interested in learning how adding extra house sauce to their chicken burgers can impact customer satisfaction. Or, you could also consider a social media marketing organization. A hypothesis test can be set up to explain how an increase in labor impacts productivity. Thus, hypothesis testing aims to discover the connection between two or more than two variables in the experimental setting.
How Does Hypothesis Testing Work?
Generally, each research begins with a hypothesis; the investigator makes a certain claim and experiments to prove that the claim is false or true. For example, if you claim that students drinking milk before class accomplish tasks better than those who do not, then this is a kind of hypothesis that can be refuted or confirmed using an experiment. There are different kinds of hypotheses. They are:
Four Steps of Hypothesis Testing
There are four main steps in hypothesis testing in business analytics:
Step 1: State the Null and Alternate Hypothesis
After the initial research hypothesis, it is essential to restate it as a null (Ho) hypothesis and an alternate (Ha) hypothesis so that it can be tested mathematically.
Step 2: Collate Data
For a test to be valid, it is essential to do some sampling and collate data in a manner designed to test the hypothesis. If your data are not representative, then statistical inferences cannot be made about the population you are trying to analyze.
Step 3: Perform a Statistical Test
Various statistical tests are present, but all of them depend on the contrast of within-group variance (how to spread out the data in a group) against between-group variance (how dissimilar the groups are from one another).
Step 4: Decide to Reject or Accept Your Null Hypothesis
Based on the result of your statistical test, you need to decide whether you want to accept or reject your null hypothesis.
Hypothesis Testing in Business
When we talk about data-driven decision-making, a specific amount of risk can deceive a professional. This could result from flawed observations or thinking inaccurate or incomplete information, or unknown variables. The threat over here is that if key strategic decisions are made on incorrect insights, it can lead to catastrophic outcomes for an organization. The actual importance of hypothesis testing is that it enables professionals to analyze their assumptions and theories before putting them into action. This enables an organization to confirm the accuracy of its analysis before making key decisions.
Key Considerations for Hypothesis Testing
Let us look at the following key considerations of hypothesis testing:
Real-World Example of Hypothesis Testing
The following two examples give a glimpse of the various situations in which hypothesis testing is used in real-world scenarios.
Example: BioSciences
Hypothesis tests are frequently used in biological sciences. For example, consider that a biologist is sure that a certain kind of fertilizer will lead to better growth of plants which is at present 10 inches. To test this, the fertilizer is sprayed on the plants in the laboratory for a month. A hypothesis test is then done using the following:
Suppose the p-value is lesser than the significance level (e.g., α = .04). In that case, the null hypothesis can be rejected, and it can be concluded that the fertilizer results in increased plant growth.
Example: Clinical Trials
Consider an example where a doctor feels that a new medicine can decrease blood sugar in patients. To confirm this, he can measure the sugar of 20 diabetic patients prior to and after administering the new drug for a month. A hypothesis test is then done using the following:
If the p-value is less than the significance level (e.g., α = .04), then the null hypothesis can be rejected, and it can be proven that the new drug leads to reduced blood sugar.
Conclusion
Now you are aware of the need for hypotheses in Business Analytics. A hypothesis is not just an assumption— it has to be based on prior knowledge and theories. It also needs to be, which means that you can accept or reject it using scientific research methods (such as observations, experiments, and statistical data analysis). Most genuine Hypothesis testing programs teach you how to use hypothesis testing in real-world scenarios. If you are interested in getting a certificate degree in Integrated Program In Business Analytics, UNext Jigsaw is highly recommended.
Fill in the details to know more
Understanding the Staffing Pyramid!
May 15, 2023
From The Eyes Of Emerging Technologies: IPL Through The Ages
April 29, 2023
Understanding HR Terminologies!
April 24, 2023
How Does HR Work in an Organization?
A Brief Overview: Measurement Maturity Model!
April 20, 2023
HR Analytics: Use Cases and Examples
What Are SOC and NOC In Cyber Security? What’s the Difference?
February 27, 2023
Fundamentals of Confidence Interval in Statistics!
February 26, 2023
A Brief Introduction to Cyber Security Analytics
Cyber Safe Behaviour In Banking Systems
February 17, 2023
Everything Best Of Analytics for 2023: 7 Must Read Articles!
December 26, 2022
Best of 2022: 5 Most Popular Cybersecurity Blogs Of The Year
December 22, 2022
10 Reasons Why Business Analytics Is Important In Digital Age
February 28, 2023
Bivariate Analysis: Beginners Guide | UNext
November 18, 2022
Everything You Need to Know About Hypothesis Tests: Chi-Square
November 17, 2022
Everything You Need to Know About Hypothesis Tests: Chi-Square, ANOVA
November 15, 2022
Add your details:
By proceeding, you agree to our privacy policy and also agree to receive information from UNext through WhatsApp & other means of communication.
Upgrade your inbox with our curated newletters once every month. We appreciate your support and will make sure to keep your subscription worthwhile